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Potential Theory and Analytic Properties
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Distributions

C. P. Dettmann® and N. E. Frankel®

Received December 31, 1992

By the use of recursion relations and analytic techniques we deduce general
analytic results pertaining to the electrostatic potential, moments, and Fourier
transform of exactly self-similar fractal and multifractal charge distributions.
Three specific examples are given: the binomial distribution on the middle-third
Cantor set, which is a multifractal distribution, the uniform distribution on the
Menger sponge, which illustrates the added complication of higher dimen-
sionality, and the uniform distribution on the von Koch snowflake, which
illustrates the effect of rotations in the defining transformations.

KEY WORDS: Multifractal Cantor; Menger and Koch fractals; potential
theory; Mellin and Fourier transforms.

1. INTRODUCTION

There are a number of interrelated physical systems which involve
Laplace’s equation with fractal boundary conditions. These include gravita-
tionally interacting structures such as the distribution of galaxies'”’ and
Saturn’s rings®); the electrodynamic processes which generate diffusion-
limited aggregates®’; the eigenmodes of a fractal drum™); and diffraction
from random®™® and deterministic”"® fractal objects. The scale invariance
of fractals and their diffraction patterns has recently been used to design
wide-bandwidth acoustical diffusors.®’

For the case of the galaxy distribution, as well as that of diffusion-
limited aggregation, the distribution of mass (respectively, charge) is not
uniform over its fractal support set. Rather, it exhibits different scaling
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exponents at different points on the fractal, and as such is called a
multifractal distribution. An introduction to multifractal formalisms is
found in Chapter 17 of ref. 10.

One problem that arises in these systems is to calculate the electro-
static potential from a given fractal or multifractal charge distribution.
While mathematicians have studied the general structure of the potential
about singular points,'") there has been very little detailed analytical work
with application to specific fractals. Bessis et al.!?) investigated the Mellin
transform and various other analytic properties of Julia sets, fractals
generated by a single nonlinear transformation on the complex field. The
Mellin transform was found to contain a semi-infinite array of poles. From
the residues of these poles, power series expansions for the potential near
points on the fractal may be generated, although they did not do this
explicitly. These results need to be generalized, since many important
fractals are of higher dimension than that of Julia sets (two), and/or
require more than one transformation to represent them. Here, we use only
similarity transformations, but place no restrictions on the embedding
dimension E or the number of transformations N.

In our earlier paper!’® we used Mellin transforms to evaluate a power
series expansion for the potential near the end of a uniform distribution of
charge on the middle-third Cantor set. It was found that, in addition to the
pm2n3—1 pehavior, there are oscillations in the logarithm of the distance
from the fractal, resulting from a vertical infinite sequence of poles in the
Mellin transform. In addition, we investigated the asymptotic behavior of
the moments of this distribution, finding oscillatory behavior which could
be related to the oscillations in the potential.

In Section 2 of this paper we generalize the method to include all
self-similar multifractal distributions, a subset of which are the uniform
distributions on self-similar fractals. Explicit calculations are then given
for the binomial distribution on the Cantor set (Section 3), the uniform
distribution on the Menger sponge (Section 4), and the uniform distribu-
tion on the von Koch snowflake (Section 5). These specific examples permit
the calculations to be carried out to a greater degree than the general case
of Section 2, and also allow the effects of the multifractal structure, higher
dimensionality, and the presence of rotations in the defining transforma-
tions to be investigated separately.

Also included in each section is an analysis of the Fourier transform
of the distribution, of much relevance to diffraction problems, but also of
interest in its own right. The Fourier transform of the Cantor set has been
known for some time.'*} Allain and Cloitre'” used convolution techniques
to extend this to self-similar fractals without rotations, investigating the
conditions under which the Fourier transform approaches zero, as k — co.
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We extend the treatment to multifractal distributions, and allow for
rotations, and make some progress regarding the convergence of the
Fourier transform as k — oo for a distribution defined using rotations.

2. GENERAL THEORY

A large class of fractals have the property that they are exactly
self-similar, that is, they may be split into N parts, each of which is a
contracted, rotated, and/or reflected version of the original. For a fractal
set F this is written

N

F=|) F, 2.1)
a=1

F,=S,F (22)

The similarity transformation .S, may be written as the combination of
an isotropic dilation factor 0 <c¢, <1, a unitary rotation/reflection matrix
U,, and a translation by a constant vector t,, all in an E-dimensional
Euclidean space R”. It is sometimes convenient to treat the linear part of
the transformation, denoted by L,, separately:

S,x=c,Ux+t,=L,x+t, (2.3)

There are several definitions of the dimension of a fractal. For a
self-similar fractal with the F, nonoverlapping, the Hausdorff and
box-counting dimensions'*®’ are both given by the solution of

N

Y cdim— g (2.4)

x=1
For the case of uniform distributions (defined below), this value appears
repeatedly throughout the calculations. On the other hand, if the distribu-
tion is multifractal (see Section 3) there are several effective dimensions,
depending on the quantity to be measured, the point on the fractal, and
so on. _

On our fractal set F we now place a charge distribution p(x). Like the
Dirac distribution, this is singular at points of F and zero elsewhere;
however, integrals of p(x) over any region are finite. The self-similarity of
the fractal appears in the definition of p(x) in a natural way:

p(x) =3 4.p(S, ') (2.5)

=1
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with normalization

j p(x) dFx=1 (2.6)
The weighting factors 1, determine the total charge on each of the subsets
F,. For the distributions considered here the A, are constant, although
generally they are functions of x. In this case the normalization condition
above is equivalent to

N
Y AcE=1 (2.7)
a=1

A uniform distribution, where identical regions of the fractal have the same
charge, is characterized by

- (2.8)

The electrostatic potential around the fractal in §+ 2 dimensions is
given as '

> p(x')dx’

Va(x)= f_ B£0 (29)

w |X—Xx'%"

Note that although the integration is carried over E dimensions, X is an
element of a higher (4 2)-dimensional space. The recursion relation (2.5)
gives

Vg(x)= % Aoy PV (S 'x) (2.10)
1

o=

If B=0 (two-dimensional space), the appropriate expression for the
potential is

Vo(x) = —jw p(x')In |x — x| d=x' (2.11)

which readily yields the recursion relation
N
Vox)= 3, A,cZ(Vo(S, 'x)—Inc,) (212)
a=1
The Fourier transform of the distribution is defined by

) =[" plx) e dx (2.13)

—
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Using Eq. (2.5) gives

5(k) = fj A,cEe u5(LTk) (2.14)

a=1

where the dagger indicates Hermitian conjugate, and is simply the trans-
pose of L,, since the L, are real matrices. If all of the L, are the same,
as for the Cantor set and Menger sponge, the above, the above recursion
relation may be iterated to give an infinite product representation for p(k),

pk) = ﬁ [ f; )Lucfexp(iL*jk'ta)] (2.15)

ji=0La=1

The moments of the distribution are defined in the usual way,

Do) = f: (%) ( 1_]1 x;f) dEx (2.16)

Substituting this into the recursion relation (2.5) gives a recursion relation
for the moments, which are usually better to calculate individually for each
p(x). If the S, contain no rotations, as in Sections 3 and 4, the P (4 Can be
calculated 1terat1ve1y, beginning with small of the ;. The presence of
rotations “mixes” the equations, so that the p (0} w1th Z ,a;=hn are
determined in terms of each other, as well as lower values of the a;. This
is illustrated by the Koch snowflake in Section 5.

Expanding the exponential in Eq. (2.13) in a Taylor series gives an
expression for the moments in terms of the Fourier transform,

iy = (=07 [ (5;) p(k)[ (217)

Expanding the integrand of Eq. (2.9) or Eq. (2.11) in a Taylor series
gives an expansion for the potential which converges far from the fractal,
in terms of the moments. At points close to the fractal the recursion
relations (2.10), (2.12) may be used to find the potential in terms of itself
evaluated at points at which the expansion is convergent.

This concludes the general remarks about self-similar fractals. The rest
of this paper consists of specific examples, where the deeper structure of the
above expressions is more evident, and the effects of various properties of
the distributions may be examined separately.
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3. BINOMIAL CANTOR DISTRIBUTION

3.1. Definition

The “middle-third Cantor set” is defined by an iterative process. Start
with a line segment, which we specify as (—1/2, 1/2) on the x-axis. Remove
the middie third, to leave two segments, each one-third of the original
length. Repeat this process with each of the two segments obtained, and so
on. The result is shown on the bottom line of Fig. 1.

The Cantor set is self-similar in the sense defined in Section 2, that is,
it is equivalent to two reduced copies of itself, with the transformations
defined as

~1

Si(x)="5- (3.1)
1

Sl =25 (32)

The binomial distribution on the Cantor set is the distribution for
which (a) both copies of the set have charge distributions which are scaled-
down versions of the whole, and (b) the right half of the set has total
charge p, while the left half has 1 — p. This distribution C,(x) is depicted
schematically in Fig. 2 for the case p=2/3. The recursion relation for
C,(x), which can easily be obtained from Egs. (2.5), 2.7), is

C,(x)=3[(1-p)C,(3x+ 1)+ pC,(3x—1)] (3.3)

The restriction p > 1/2 may be made without loss of generality, since
replacing p by 1— p simply reflects the distribution across x =0.

Fig. 1. The construction of the Cantor set. The ends of the line segment shown are taken to
have coordinates (—1/2,0) and (1/2,0).
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i J!\ IH‘ l\ ;H‘ IH |

Fig. 2. A representation of the binomial distribution on the Cantor set, for p=2/3. The
length of each line is proportional to the amount of charge on part of the Cantor set.

In the case p=1/2, C,(x) reduces to the uniform case treated in our
earlier paper'®; many of the results of that paper are obtained as a special
case of the results presented here. If p is equal to 1 (or 0), the distribution
“is concentrated at 1/2 (respectively, —1/2) and reduces to a shifted Dirac
distribution.

For other values of p the distribution is multifractal, meaning that
effective dimensions (there are several possible definitions) differ from point
to point on the fractal. This is shown explicitly here for the effective
dimension defined using the power law of the potential. Chapter 17 of
ref. 10 gives an introductory explanation of multifractals, with the binomial
Cantor distribution as the main example. It also defines the multifractal
spectrum f(«), which is an important aspect of this subject, but not one we
will have need of in our calculations.

3.2. Potential

The electrostatic potential from the binomial Cantor distribution in
three dimensions is given by Eq. (2.9),

o C,(x) dx'
o [(x—x) 4 y2]"?

V(x: ) =f (34)
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The generalization of this to nonzero values of z is trivial. Expanding the
integrand in a Taylor series about x’=0 gives an expression which
converges for large x and/or y,

= C, O 1
Vp(‘x’ y)= Z n! ax/n [(x_x/)2+y2]1/2 0

n=0

(3.5)
Here, C,,, are the moments of the distribution, defined by
Cra=]  Cpfx)x"dx (3.6)

These are evaluated and discussed in the next subsection.
Vv, also satisfies the recursion relation (2.10),

V(x,y)=3pV,3x—1,3y)+3(1—p) V,(3x+1, 3y) (3.7

We will not do a complete analysis of the potential here; we are most
interested in its behavior near the fractal, and in particular how the dimen-
sionality of the distribution appears in the form of power laws. First we
consider the potential along the line x=1/2, for small y. This corresponds
to a line coming vertically down to the right-hand endpoint of the fractal.
Equation (3.7) gives

V,(1/2, y)=3pV,(1/2,3y)+ 3(1 — p) V,(5/2, 3y) (3.8)

The first term in this expression corresponds to a point which is still near
the fractal, so the recursion relation is used iteratively to obtain

1 A . 5 .,
v (30)= £ =Ly v, (50) (39)
j=0

Note that this series does converge, since the potential approaches zero at
large distances. Equation (3.5) is now substituted to obtain

1 ® - L= C,, 8
(b} S 5 G

b - n
2 =0 P =, n! oOx

1
62—+ )7,

(3.10)

The power law (or logarithmic) dependence of this expression on y is
best obtained using Mellin transform technique."'® The argument of the
derivative is written as the inverse Mellin of its Mellin transform, using y>
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as the Mellin variable. Care must be taken with the sign of the (5/2 —x')
term. Then the derivative is performed, and also the sum over j, which
becomes a geometric series. The result is

1\ _1-p & (=1)C
”(5’y>_ p L

V —
s n! 2mi

¢ +ioo N
xjc—ioo ds |y|_ s32x‘1/P"1

() I(1)2—s) I'(2s) (5\> "
TR r(zs—n)<"> @10
where
1/ Inp 1
(1 = 3)< <— (3.12)

Note that the potential is an even value of y, hence the absolute value
signs. The integral is evaluated by closing the contour to the left and using
Cauchy’s theorem. The leading term (smallest power of |y|) comes from
the denominator, which has a line of poles of residue 1/(21n 3) at

1 Inp 2aim
s—sm=2(1+ln3+ln3> (3.13)

In addition, the gamma function I'(z) has a pole of residue (—1)%/g! at
z= —q for all nonnegative integers g. This gives a power series in even
powers of y. The result is

1 1y c

- < (‘ pin —28m
VP(z’) 2pln3Z Lz P

n=0m= —oo

I(s,)(1/2—s,,)I2s,,) 5 Do —r— 1
e o (3)

1—p & & (-1)(2g+n) C
L L T aeo
PK r(q+1/2)<§>—2q*"*
3% Up_1 I(12) \2

(3.14)

The first series gives a power law corresponding to a dimension of
—In p/in 3, which reduces to the dimension of the fractal in the case of a
uniform distribution (p=1/2). Since the point at x = 1/2 has the greatest
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charge “density,” this corresponds to the largest dimension associated with
this multifractal distribution. The terms corresponding to nonzeré m result
in oscillations in the logarithm of |y|, as for the uniform case."* The coef-
ficients of these terms decrease exponentially with |m|, due to the gamma
functions of complex argument. It can be shown using the results of the
next section that the second series converges for |y| <2 for all 0 < p<1.
If the contour is closed to the right, the large-y expansion is obtained.
The result, which agrees with a more direct evaluation of Eq. (3.5), is

1 . < —1-—2g - (_1)n+q(2q)| Cp,nr(q+1/2)
VP(E’}’)"EO'” ’ ~ T g q-n)t  T(12)

5\%=" 1—p
“\2 32
—p

1 p?-3p+2
|yl 41y
9p* — 198>+ 993p — 1584p + 780
3.15
+ 2080 | yI° * (3.15)

The potential near the opposite end of the fractal, at (—1/2, y), may
be obtained by replacing p by 1 — p in the above analysis. The result is an
effective dimension of —In(l — p)/In3 at this point, which is thus the
smallest effective dimension of this distribution.

The other point we consider is x = 1/4. This is the point obtained by
choosing first the right segment of the fractal, then the left subsegment,
then the right subsubsegment, ad infinitum. The recursion relation (3.7)

gives
1 1 7
Volgr Y =3pV,| =3 |+30=-p)V, 13y

7 t
=3 3%, (= 3 0) 430 -0 7, (5.9

7
+31-p)V, (Z’ 3y>

7

- i+ 1 _1_ 1 anje
= X [5p(1-p)] [3PV,,(4,3 y)

7 .,
S ) B
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This expression is manipulated in exactly the same manner as Eq. (3.9) to
obtain

1 128 Cu s D8, T(12~5,) (25,
V"<?1’y>=41n3Z Xy I'(1/2) T(2s,,—n)

() e

2 & (=17 (2q+n) Cpp

+2 X

ne0 g=0 q! (2g)! n!
b Ta+12)
37%2p(1—-p)—1 I(1/2)
7 —2g—n—1
X(Z) [3-294(—1)"] (3.17)
1 In p(1—p) 2nim ,
S'"=§<1 2In3 ' 20n 3) (3.18)

Thus the effective dimension at this point out to In p(1 — p)/(2 In 3), which
is just the arithmetic mean of that of the two endpoints. The second series
converges for | y| < 5/4. This procedure generalizes to any rational point on
the Cantor set, that is, any point which is transformed to points which are
mapped onto themselves after a finite number of transformations.

It is also possible to calculate the potential near the ends of the fractal,
but along the x axis. The recursion relation (3.7) gives

1 1 5
v, <x+§, 0>=3pr <3x+-2-, 0>+3(1—p) v, <3x+5, 0>

—p & 4 . 5
=1—p-’—’ Y Gp)ytlv, <31+1x+5, 0) (3.19)
j=0

Substituting Eq. (3.5) and performing the multiple derivative gives

1 l—p& . ., 2 C,. )
= = . 3.20
o (x430)= L 00 X e 0

n=0

which is then Mellin transformed with respect to x, and the contour
integral performed by closing to the left to obtain the small-x expansion,
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1 1 1—p & C,. i
Vp <X+§, 0>=-—— 4 Eer Z I'(s,,)

In3 p n=0 n! m= —w
2 n+1l—sy,
xI'(n+1—s5,,) <§> x o
l—-p & & (=1)"(n+q)
+— C,.. —_—
p ,EO i EO n!q!
2 n+qg+1 x?
= — 3.21
G = 32D
lnp 2mim
=l4+—t— 322
Sm +1n3+ In3 (322)

Note that the effective dimension —In p/ln 3 is the same as the previous
case [Eaq. (3.14)], as is the constant term (coefficient of x°). The second
series converges for x < 2. Closing the contour to the right generates the
large-x expansion,

1 hd 4 S\¢~”" g! 1—p
v x+—,0>= x ' (——)
p( 2 qgo nZO 2 nt(g—mt3*—p
1 1—p+2—3p+p2 26 —47p + 24p* —~ 3p®

x  x? 2x3 26x*
260 — 528p + 331p” — 66p° + 3p*
+ PESL O (3.23)
260x

3.3. Moments

Now we consider the moments of the distribution, the C,,, defined by
Eq. (3.6). Substituting the recursion relation (3.3) into this definition and
using the binomial theorem yields a recursion relation for the moments:

n—1
Conmgmg £ G} Ipra=pa=1r—1 (20
3"—-1 .2, J

The C,., are polynomials in p with rational coefficients. The first few are
tabulated in Table I. They rapidly become more complicated, and it is
difficult to see what the behavior is as # — o0. Unlike the uniform case,
there are now both even and odd moments, and it is interesting to consider

the limit p — 1/2, where all the odd moments vanish. In general,

Cl—p;nz(_l)n Cp;n (325)
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Table |. Moments of the Binomial Cantor Distribution

n Cp:n

0 1

l (2p—-1)2

2 (22 =2p+1)/4

3 (12p° — 18p? + 32p —13)/104

4 (12p* —24p* + 184p2 — 172p + 65)/1040

5 (24p® — 60p* + 2712p° — 4008p> + 4478p — 1573)/50336

6 (72p% — 216p° + 68484p* — 136608p° -+ 496670p — 428402p + 143143)/9161152

We now proceed to find the large-» limit of the C,.,, beginning with

the ansatz

pgins

C o= a"[F(n)+ (— 1) G(n)] (3.26)
This ansatz is a natural extension of the p=1/2 result."® The F and G

functions are assumed to be “slowly varying,”

Fn) G'n)
F(n)’ G(n)

<n-12 (3.27)

At all times during this calculation we omit terms which are a factor
1/n smaller than the dominant terms. Thus Stirling’s formula, which is used
to simplify the binomial coefficient, is written

q!'=gq% " *(2nq)"* [1+ 0(1/9)] (3.28)

Note that since the contribution of the endpoints of the sum in Eq. (3.24)
is negligible due to the binomial coefficient, irrespective of the value of q,
both j and n— j are of order », so the use of Stirling’s formula for their
factorials is valid. Thus the summand of Eq. (3.24) may be written

|| g Fm
P (A=) =] D2ap(i— )72 P

+ (=1 (1=p) G(yn)] (3.29)

where

j=yn (3.30)
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Here, the alternating sign given by (—1)’ has already been averaged over.
The terms which contribute to the sum are around

a
+a

Ve =1 (3.31)

and are of order \/1_1 in number; thus all terms which do not have n as the
exponent are effectively constant over this range. The sum is written as an
integral, with the Euler~Maclaurin corrections being of order 1/n. The
result is

~1/2

1 n n
Crn=73n D (1= )] LpF(yn)+(=1)" (1= p) G(yn)]
1 ay n
X Jo n dy I:W] (332)

The integral is evaluated using the method of steepest descents; that is, the
integrand is written as an exponential, the argument of which is expanded
in a Taylor series about its maximum, to give

[nayess {n[inta+ )=S0 L - ypurs - [} 30

Because the factor of n in the exponential is so large, the above quadratic
approximation gives an accurate expression for the integral, leading to

Cpn=a'TFn) + (=17 Glm)] =55 (1 +a)
x[pp(l—‘:’_’—a>i(1—p)G<l‘f:’a>] (3.34)
which implies that
a=1/2 (3.35)
F(n) = pF(n/3) (3.36)
G(n)=(1-p) G(n/3) (3.37)

The value of a comes from the fact that the distribution ends at x=1/2.
The general solution for the equation for F(n) is

(e o)

Fin)y= Y. fn% (3.38)

m= —oQ
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where

(3.39)

and the f,, are coefficients which are yet to be determined. This expression
may also be written as »n'™#"* multiplied by a Fourier series in ln n. The
expression for G(n) follows similarly:

G(n)= i g,,n" (3.40)

where
_In(l—p) 2mim

"m="n3 "3 (3:41)

Figures 3 and 4 show numerical plots of the Fourier series for F and
G, that is, these functions with the power law dependence removed. The
oscillatory behavior is quite clear, as are the 1/n corrections for small #,
which are negligible in the large-n limit of the above calculation.

Now we use an expression for the potential found in the previous sub-
section and the fact that the potential near the end of the fractal, where the
series (3.20) is barely convergent, is closely related to the n — oo limit of the
C,.., to find the f,, and g,, coefficient, is closely related to the n — co limit
of the C,,, to find the f,, and g,, coefficients. We begin with Eq. (3.20), set
y=0, and perform the multiple derivative, to obtain

1 . Crin
V17 (X+§,0>= Z W (3.42)

n=0

0.517

0.51675
0.5165
0.51625
0.516

0.51575 i

Fnyn—neiin3

0.5155

0.51525

Inn

Fig. 3. A plot of F(n) n™'#™3 where F(n) is defined in Eq. (3.26).

822/72/1-2-17
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0.434 e

0.43375

0.4335

0.43325

0.433

0.43275

G(n)yn—"m -3

0.4325

0.43225

0 2 4 6 8 10 12 14

Inn

Fig. 4. A plot of G(n) n~181 ~P¥183 where G(n) is defined in Eq. (3.26).

This expression is then Mellin transformed with respect to x, and the C,,
expanded as in Eq. (3.26) to give

y +.]; 0 _LJ~£+iood . OZO: 30: f n¢m<1 s—r~—1
\*T2 )T 2w S =2

¢—ico n=0 m=—c0
I's)yrn+1-—ys)
I'in+1)

(3.43)

where the signs due to odd and even »n have been averaged over. Here,
we are only considering the terms which are divergent in the x — 0 limit,
thus the terms for small #, and the part of C,, neglected in the previous
calculation do not contribute. Stirling’s formula (3.28) leads to

T(n+1—5)/T(n+1)=n"*(1+0(1/n)) (3.44)

Dropping the n =0 term, which was just a constant in the original sum, the
sum over n is now simply

feo)

X Tt =l(s—¢) (3.45)

n=1

where {(z) is the Reimann zeta function, which has a pole of residue 1 at
z=1. Thus, closing the contour to the left, we obtain

V,(x+1/2,0)=const + i I(s,,) fu(1/2)5m 1 x—om (3.46)

m= o
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where

(3.47)

This may be compared with Eq. (3.21) to give

ALY

fm=1n3 J/

25*2 P"r(n+1 m)(%)m'sm (3.48)

The corresponding expression for g,, is found by replacing p by 1 —p in
the above derivation; the C,_,, give the alternating minus signs [see
Eq. (3.25)] which single out the g,, from the original sum. The result is
exactly the same expression, but with p replaced by 1 — p. This symmetry
ensures that in the case p=1/2 all the odd moments are zero.

3.4. Fourier Transform
Now we turn to the Fourier transform of the distribution. This is given

as [Eq. (2.15)]

P) e-i3’fk+pei3‘fk]

_—
—
I

h-]

o
=
i

i

[cos 3~k +i(2p— 1) sin 377k ] (3.49)

[ 1:}8

R

The product converges for all complex values of &, and is thus a perfectly
well-behaved analytic function. It gives us a representation for the original
distribution

o dk 2 . .
C,(x) = j e " II [eos 37k +i(2p—1)sin37k]  (3.50)
w st
as well as the moments [Eq. (2.17)]
C,,=(=i) 0 [] [cos37k~+i(2p—1)sin3 k] (3.51)
’ akn j=1 k=0

Generally, random fractals are characterized by a noninteger power
law decline of the power spectrum as k — oo, and this property has been
used to define the concept of Fourier dimension.!'® However, for exactly
self-similar distributions, this limit does not exist, due to the presence of
long-range correlations. In the above case, a value of k equal to 3%z for an
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arbitrarily large integer ¢ results in the first ¢ terms in the product being
equal to 1, so that

C,(3'n)=C,(n) (3.52)

Thus the above expression does not strictly tend to zero for large k. We
can, however find its “average” behavior by cutting off the product when
the argument of the trigonometric functions is of order 1, and for the
remaining terms using the geometric mean of the absolute value of
cos x +i(2p— 1) sin x,

1 2n
exp {—2——7; L In[cos? x + (2p — 1)? sin? x ]2 dx} =max(p, 1 —p) (3.53)

so that the power spectrum has the “averaged” law
|Cvp(k)|2~k21nmax(p,1~p)/1n3 (354)

For the purposes of the Fourier transform, the effective dimension is thus
also the smallest dimension (—In p/In 3) applicable to this distribution.
In other words, the power spectrum decreases at the slowest rate available
to it.

3.5. SUMMARY

The binomial distribution on the Cantor set may be treated in an
analogous fashion to the uniform case,"'® but shows much additional
structure. The dimension of the support of the distribution, In 2/In 3, plays
no discernible role in the structure of the potential, the moments, or the
Fourier transform. Rather, the structure of the potential is governed by an
effective dimension which depends on the point near which the potential
is measured. This effective dimension varies between —In p/In3 and
—In(1 — p)/In'3. The asymptotic form of the moments has terms corre-
sponding to each of these endpoints, but no intermediate effective dimension.
The behavior of the Fourier transform is apparently dominated by only
the minimum of these two values, although the other value is undoubtably
hidden in its deeper structure.

4. THE MENGER SPONGE

4.1. Definition

The purpose of this section is to investigate the effects of increasing the
dimension of the space in which the fractal is embedded, while having as
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little other complication as possible. Thus the distributions considered here
will be uniform in the sense defined in Section 2 and the transformations do
not contain any rotations. Probably the simplest three-dimensional fractal
is the outer product of three Cantor sets. The uniform distribution on this
set is simply given by

Cipfx) Cia(y) Cialz) (4.1)

The presence of complicated square roots makes the potential difficult to
calculate in three dimensions; see, for example, the treatment of the von
Koch snowflake given in the next section. The moments and Fourier trans-
form of this distribution, however, are readily obtainable from those of the
uniform Cantor distribution, and thus do not shed much light on the
properties of more general fractals, which do not separate in this way. It is
clear that a slightly more complicated example is needed.

Probably the best-known fractal in three dimensions is the Menger
sponge. This is closely related to the Cantor set, but not simply the outer
product of three Cantor sets. It is defined by taking a cube of length 1, and
centered on the origin, dividing it into 27 smaller cubes, and accepting only
the 20 of those which contain the edges of the original cube—see Fig. 5.

Fig. 5. The first step in the construction of the Menger sponge. The large cube has vertices
at +1/2.
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This process is continued for each of the smaller cubes, and so on. The
result is rather difficult to draw on a computer, and we refer the reader to
p. 145 of Mandelbrot,*® which was in turn copied from an earlier book!
Mathematically, however, the Menger sponge is quite easy to define. Using
the results in Section 2, we obtain the dimension of the set (In 20/In 3) and
also a recursion relation for the uniform distribution o.n the Menger
sponge, M(x, y, z).

27
M(X, y52)=% [M(X+’ Y+9Z+)+M(X+7 Y+>Z)+M(X+’ Y+5Z—)

+MX,,Y,Z )+ MX, ,Y,Z )+ MX,, Y ,Z,)
+MX,,Y_, D)+ MX,,Y_ ,ZY+MX, Y, ,Z,)
+MX, Y, ,Z )+ MX,Y_,Z )+ MX,Y_,Z)
+MX_ Y, ZH)V+MX_, Y, 2y +MX_,Y, ,Z_)
+MX_,Y,Z )+ MX_,Y,Z_ )+ MX_,Y_,Z.)
+M(X_, Y, Z)+M(X_, Y_,Z_)] (4.2)
where

X,=3x+1, X =13x, X =3x-1

Y, =3y+1 Y =3y Y_=3y-1 (4.3)

Z,=3z+1 Z=3z Z_=3z—1

4.2. Moments

The moments M, follow the symmetries of the distribution, that is,
they are totally symmetric in i, j, and k, and are zero if one or more of the
indices is odd. The above recursion relation for the distribution leads to the
following expression for the even moments:

1 1 IAVOAYLS
MWFE&:FT1 y M"‘”(a)(b)(c) (240,40, +0,) (44)

a,b,c

where the sum is over all even values of @, b, and ¢ permitted by the
binomial coefficients except for the term in which a=i, b=, and c=k,
and §,,, refers to the Kronecker delta, equal to 1 if m=n and zero
otherwise. Some values of the coefficients are given in Table II.

The asymptotic properties of the moments for large i, j, and k are
obtained using a similar procedure to that of the previous section. The §,,,
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Table Il. Moments of the Menger Sponge

Mg 1
Moo, 1/10
Moo 2/125
My, 19/2000
Moos 137/45500
My, 1373/910000
My, 1507/1820000

only contribute at the endpoints of the sum, and thus are negligible in this
limit. If the ansatz

My =a'* ") f() f(k) (4.5)

is substituted into the above expression, the triple sum separates. Following
the same procedure as in the previous section, the binomial coefficients are
simplified using Stirling’s formula, the sum is written as an integral, and the
integral is performed using the method of steepest descents. The result is

a=1/2 (4.6)
S(n)=20""f(n/3) (4.7)
which leads to an expression of the form
fmy="%  fun® (4.8)
where
In20 2mim
o= T3 In3 (49)

Again the 1/2 is due to the size of the fractal, but now there is an extra
factor of 3 in the ¢,,. It appears likely that this factor is the embedding
dimension E; however, as the section on the moments of the von Koch
snowflake shows, the situation is not this simple. The coefficients f,, cannot
be determined at this point by a similar means to those of the binomial
Cantor distribution, since the potential has not been evaluated.

4.3. Fourier Transform

The Fourier transform of the Menger sponge is given by [Eq. (2.15)]

Mk, ky k) =[] $2&nl +&n+nl+2) (4.10)
j=1
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where

&=cos(3 7k,)

n=cos(3’k,)

¢ =cos(37’k,)

This is quite similar to the Fourier transform of the outer product of three
Cantor sets,

61/2(kx) 61/2( C1/2 n én (4.11)

but has the factor of 5 characteristic of the Menger sponge, while still
keeping the symmetry between x, p, and z. Like the binomial Cantor
distribution, it does not tend to zero for large k,, k,, and/or k_. All but a
small number of terms in the product are close to 1 if k,, k,, and k, are
all of the form 37z or zero, where ¢ is a positive integer.

As in the previous section, the approximate form of A2 for large
arguments may be found by replacing terms in the product by their
geometric mean; in this case, however, the integrals must be performed
numerically. Without loss of generality we assume that k, >k, >k,. The
product then breaks up into several groups of terms, defined as follows:

1. 377k,>1. The geometric mean of the square of the terms in
Eqg. (4.10),

1 2n p2m 21 1
exp(/;) =exp <(_27;F fo fo fo In {[g (2 cos x cos y cos z

2
+cOs X ¢Os ¥+ COS ¥ COS z + COS z COS x):l }dx dy dz)

=0.00917+4x10?° (4.12)

2. 37,<1 and 377k, > 1. Now, one of the cosines is approximately
one, so that the appropriate expression is

1 2n p27 1 2
exp(l,) =exp <W JO L In {[g (3 cos x cos y + cos x + cos y):I } dx dy)

=0.0290+ 1x 10~* (4.13)
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3. 37k,<1and 37/, > 1. With only one of the cosines varying, the
integral can be obtained analytically as

exp(l,) = exp (% f: In {E (4 cos x + 1)}2} dx) =§4§ (4.14)

4. 377k,.< 1. These terms are approximately equal to 1.

Substituting these expressions into the product, evaluating the number
of terms corresponding to each case gives

M(kx, ky’ kz)z___ZI3/ln3Y12/1n 3X11/ln3 (415)
where
Z=max(k,, 1)
Y =max(k,/Z, 1) (4.16)

X=max(k,/Y, 1)

Unlike the one-dimensional case, this expression does not contain the
dimension of the fractal distribution explicitly. Even the part involving [,
is modified

I, 2InQ20/8)

In3 In 3 (4.17)

with the presence of the 8 somewhat mysterious.

5. THE VON KOCH SNOWFLAKE

5.1. Definition

Finally we consider the von Koch snowflake, which, in addition to
being in two dimensions, has transformations which contain rotations. The
snowflake is constructed by the following iterative procedure: Take an
equilateral triangle, which we will take to have side length 1, centered on
the origin, and with its apex on the y axis; replace each side by the con-
struction shown in Fig. 6, in which each of the new sides has a length 1/3
of the original; repeat this for each of the 12 sides of the new figure, and
s0 on. The result is shown in Fig. 7. Since each part of the fractal consists
of four copies of itself reduced by a factor 3, the dimension of the fractal
is In 4/In 3.
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Fig. 6. In the construction of the von Koch snowflake, each edge of an equilateral triangle
is replaced by this figure. Each of the resulting 12 edges is replaced by this figure, ad infinitum.

There are a number of possible choices for the defining transforma-
tions for the von Koch snowflake. The most obvious is to split it into three
sections, each of which is given by four copies of itself. If the snowflake
must be treated as a whole, it is possible to write the recursion relation for
the uniform distribution K(x, y) in terms of six copies of itself reduced by
1/3 minus a single copy rotated by n/6 and reduced by 1/\/3. The most
economical in terms of the number of transformations, however, is to split
the snowflake into three sections, as above, but use only two transforma-
tions, noting that the outside of the snowflake is similar to the inside.

Let the uniform distribution on the upper third of the fractal with
normalization 1/3 be denoted by k(x, y). The treatment in Section 2 gives
the relation

0.6

0.4

02

-0.2

-0.4

-0.6

-04 -0.2 0 02 0.4

Fig. 7. The von Koch snowflake. The side length of one of the large triangles is 1. Note that
the inside of the snowflake is similar to the outside.
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3 3x 3y S3x Iy 2.3
o =3[ k(- 550 -5
W iy Six 203
+k<2+2’ 2_2+3>} G

The distribution for the entire snowflake is then given by

3 3

X \/_iy [3_5_2> (5.2)

+k<'§_T 2 2
so that
[ fw K(x, y)dxdy=1 (5.3)

5.2. Potential

The recursion relation for the potential of the upper third of the
distribution in three dimensions (f=1) is given by [Eq. (2.10)]

3x \/Ey ﬁx 3y 2\/5
+v<7+ 2 2 2t T3 ﬁz)] (34)

This expression is used to evaluate the potential near the fractal in terms
of its values at a greater distance from the origin. At large distances from
the fractal the series obtained by expanding Eq. (2.9) in a Taylor serics,

oo} o] km . am an
v D= 2L il 6 oy
1

X [(X—x’)2+(y_yr)2+22]1/2 =0 (55)

where k,, , are the moments of the k(x, y) distribution, defined in the usual
way by

ey = jjo f k(x, y) x™y" dx dy (5.6)

The moments are studied more fully in the next subsection.



266 Dettmann and Frankel

The potential of the full snowflake V(x, y, z) is given in terms of v as

x 3y Bx yZ)

V(xayaz)=v(x:yaz)+v< +— -
INESNCGN IS
2 272 2’
This potential is plotted in Fig. 8.
Now we use the Mellin transform technique of Section 3 to investigate

V(x, y,z) along the y axis above the uppermost point of the fractal at
(0, \/5/3, 0). A direct application of the relation (5.4) gives

v<0,§+y,0>=\/§l;<l+\2/§y’\/§6—9)’)
3ﬁ[0<1+3x/§y \/5—27y>
4 ) ’ 6

(5.7)

+v<1+3\/§y,—j—§>+§_—§v<1,\—j§+3)’)]
2\/551 G)j |:v<1 +37+ 12 \%)

2 ( 2 . ﬂ
+—v|1,—=+3/ 58
A\ A b (5.8)
From this point the analysis is similar to that of Section 3; Eq. (5.5) is

substituted for v and the expression involving y is written as the inverse
Mellin transform of its Mellin transform, specifically,

v(O\/—-l-y,) fZ() Z Z K 8™ 0" 1

o m! mln! ox'™ 6y”’ 2mi

m=0 n=
c+ico . A
—5 —j=12¢2 —j—1/2 s—lP g
xL_m ds y Sinns[3 3 ) S“(c)
2 ) ) B
+——=3" 3"CS_1PS_ <—>] (5.9)
\/g ( ) 1 C Y ymD
where
O0<cexl
A=1—x'
(5.10)
B=2//3~y

C=(4>+BY)'"?
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Fig. 8. The potential of the von Koch snowflake, defined using Eq. (2.9) with f=1.

and the P,_,(z) are Legendre functions of the first kind, reducing to
Legendre polynomials for the case s an integer, but not for the case of
interest at s =y, (see below). As for the binomial Cantor distribution, the
sum over j is a geometric series, leading to poles at

In4 2nik

In3 * In 3
for all integers k. The sin ns in the denominator generates poles for all
integers s. Closing the contour to the left thus gives an expression including
a series of terms of the form y'™#'3~1 multiplied by oscillatory terms, plus
a power series in y beginning with a constant. It thus has the same form
as the potential from the Cantor set, although the coefficients are more
difficult to calculate. The full potential J also contains contributions from
the other two-thirds of the snowflake. The contributions due to each third
are equal, and given by [see Eqs. (5.5), (5.7)]

Skzl

(5.11)

(5.12)
L2392 %P+ (/36— 32— P10
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which is then Mellin transformed in the same way as the previous expression.
The final result for the potential near the uppermost point of the snowflake
is

V<o,£+y,o>:u<o,—‘@+y, 0>+2v <%+@,_£§_X, >

3 3 6 2

=\/§TE i 75 i o k o am an

In 3 smnskm 0ne Om‘n'ﬁx’”‘ oy’

k= -0
A 2 B
Cs—1| 3-s/2p —|4+-—P —
“d [ w(c)m @i
) km,n om o
w3 Z e 0,2, minl 67 5y
A 2 B
c ' 39°p (S )+—=P,[ =
< [ 4(c>ws @,
o0 mn am an
2 EO (= ZO minl ox'™ 5y
D
«{E-a-1p (_>} (5.13
{ q E Xm =0 )
where A4, B, C, and s, are defined as previously, and
o3 By
3 2 2
. s \/5 i (5.14)
5= () +(56+) |
and the relation
P, (z2)=P,2) (5.15)

has been used. The first few terms in the above expression for the coef-
ficients of powers of y were evaluated numerically. With the exception of
the coefficient of y™#™3~1  which converged rapidly to 3.7481, all of
the series converged quite slowly. As in the case of the binomial Cantor
distribution, however, the coefficient of y'»#1n3—1-2mn3 g of order 109,
showing that the oscillations in In y are again small in this case.

Closing the contour to the right in Eq. (5.9) gives the large-y expan-
sion. The Legendre polynomials are finite, cutting off the sum over m and
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n. Thus the coefficients of powers of 1/y are known combinations of
rational numbers and \/3,
Kpn 07 0"

J3 z
N - — —q 4+1
(0.4 50) D D e
J3cr! A\ 2 B
N - —q/2 et — -
X{3H4—1[3 P"”(C)*ﬁ”"“(C)]

e (3)

7 1 463

11
Ty Ay 18 2 Ay T 2016y°

x'=y'=0

(5.16)

5.3. Moments

The moments of the upper third of the snowflake &, , and of the entire
snowflake K, , are defined in the usual way,

km,,,=£c Jio k(x, y}x™y" dx dy (5.17)
Km,an‘iO jio K(x, y)y x"y" dx dy (5.18)

The k,, , obey a recursion relation obtained by substituting Eq. (5.1) into
Eq. (5.17),

ny 1 my +my+ np+ny

: (_1)m1+m2+n2 _
! ! |

nytnyl(n—n, —n,y)! 2

1 2m—2my —my+n—ny
x(———) k

NG

This is a set of linear equations involving all of the &, , up to a particular
value of m + n. The “mixing” of the recursion formulas in this way is due
to the rotations in the original transformation. It requires a much larger
amount of calculation to evaluate these moments than for the case without
rotations, and it is also much more difficult to determine analytically the

(5.19)

my +ny,n+ng
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asymptotic behavior as m, n— co. The moments for the whole snowflake
are obtained by substituting Eq. (5.2) into Eq. (5.18),

Kpn=Kpnt ¥ [(—1)" =" 4 (=1 +™]
m=0n=
1 e m—m'+n'
x(3) W3 Ko st st — (5.20)

The first few &, , and K,, , are tabulated in Table [II. Note that the
symmetries of the distributions impose certain conditions on the moments.
Both k(x, y) and K(x, y) have the y axis as a line of symmetry, so all of the
moments with m odd are equal to zero. Similarly the X, , with n odd are
also equal to zero. The full von Koch distribution is invariant under n/3
rotations. A little algebra shows that this implies K;,=K,, and
K4o0=K, 4=3K,,. The pattern does not continue: K, ¢ # K¢ o.

Although the authors cannot see a method of determining the
asymptotic form of either the &, , or the K, ,, it is possible to make
hypotheses based on the results of the previous sections and test them
numerically. Our computer resources permit us to go only as far as
m+n=100. We restrict ourselves here to the case m=0 or n=0. The
dominant factor in X, , is of the form a™, where a is the greatest extent of
the distribution in the x direction, that is, 1/2. Based on the results from the

Table IIl. Moments of the von Koch Snowflake
m, n Kn Kon
0,0 13 1
0,1 2./327 0
0,2 7/135 19
2,0 1/45 19
0,3 4./3/315 0
2,1 4./3/315 0
0,4 35737/3662820 5/252
2,2 59/23940 5/756
4,0 1201/406980 5/252
0,5 2855 ,/3/1098846 0
2,3 2687 ,/3/5494230 0
4,1 989 ,/3/1831410 0
0,6 19838747/9253504260 13669/3174444
2,4 24886319/83281538340 2141/3174444
4,2 8304973/27760512780 149/151164
6,0 167641/342722380 1409/352716
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Menger sponge, we would expect a factor of the form m %273 where
the In 4/In 3 is the dimension of the fractal, and the 2 is the embedding
dimension E. Thus a function

K\(m)=K,, o 2"m'>n3 (5.21)

is plotted against m. The graph is quite flat, converging to approximately
0.857, as shown in Fig. 9, indicating that this form is approximately correct.
Similarly, in the y direction, we might expect a similar form, with a equal
to 1/\/5. This is not the case, and it appears that the correct quantity to
be plotted is in fact

Ky(n) = Ky, 3" 4103 (5.22)

which also gives a flat graph, converging to approximately 1.382, as shown
in Fig. 9. The factor of 2 difference between these two cases is simply a
numerical observation; it is hoped that further investigation into the
structure of these moments will shed more light on this interesting factor.

5.4. Fourier Transform

The presence of rotations makes it difficult to write an explicit expres-
sion such as Eq. (2.15) for the Fourier transform of the & distribution, &(k);
however, there are a few results which can be deduced directly from the
recursion relation, Eq. (2.14),

E(kx,ky)_—__;[ei(kx/:;-i‘ky/ﬁ)E(_lc_x+ k, _ ky __kz_y>

AN W

+ e h3+ kB (E_,. r ks —ﬁ)] (5.23)
5 .

2 2 /323
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Fig. 9. The asymptotic behavior of the moments of the von Koch distribution. See
Egs. (5.21), (5.22).
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A power series expansion for k¥ around k=0 may be obtained by
expanding the exponential in Eq. (2.13) in its power series to obtain

v v (k)" (k)" Ko,

Rk k)= Y ¥ (5:24)
m=0n=0

m!n!

The Fourier transform of the entire distribution K is related to k by
Eq. (5.2). We have evaluated K numerically using these three equations; the
square of K is shown in Fig. 10, which approximates the diffraction pattern
through a snowflake-shaped slit. From this figure it is evident that K has
the same symmetry group as the hexagon (Dy).

For the fractal distributions in previous sections, which did not have
transformations involving rotations, showing that the Fourier transform
did not approach zero as |k| - oo was trivial. In this case, the proof
requires more work.

The transformations in Eq. (5.23) are given by a dilation of 1/\/5 and
a rotation of an odd multuple of n/6. (The second transformation also
involves a reflection which makes no difference here). Thus six points on
the vertices of a hexagon are mapped to the vertices of a smaller hexagon,

° ..‘-._ s

'Ty . .

-~
] L N

e the
wie)'e

Fig. 10. The square of the Fourier transform of the von Koch snowflake. Lighter shades
correspond to larger values, with white denoting all values above 0.007.
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which is rotated by n/6. The value of & at a single point far from the origin
can thus be evaluated in terms of % at only six points, which lie on the
vertices of a hexagon, and a complicated combination of the exponentials
in Eq. (5.23). It is not difficult to check that it depends on the values at all
six of these points.

The values of k for which both exponentials in Eq. (5.23) are equal to
1 lie on a periodic lattice with basis vectors (3z, \/3 n) and (—3m=, \/5 7).
This lattice is invariant under n/3 rotations, and also the inverse of the
transformations in Eq. (5.23), that is, Liﬁl. Hence there exist arbitrarily
large values of |k| for which all the transformations involve exponentials
equal to 1, until the innermost hexagon of lattice points is reached. Where
the exponentials are 1, k is given as the arithmetic mean of two of its values
at points in the inner hexagon. This means that, for one of the large values
of |k| above, k is approximately equal to the arithmetic mean of all six of
its values at the inner hexagon. Numerically, this arithmetic mean is
—0.066534. Thus % does not tend to zero for large |k|. Similarly, K does
not tend to zero either.

It is clear that the von Koch snowflake is a very special example; the
translation vectors t, which generate the lattice of points must be consis-
tent with the linear parts of the transformations which determine the points
at which the Fourier transform is evaluated. It is clear that many self-
similar fractals do not satisfy the stringent conditions required for the
Fourier transform to contain peaks at large |k|. There are, for example, no
periodic lattices with fivefold symmetry, although this does not preclude
the possibility of the exponentials in the recursion relation approaching 1
only in the large-|k| limit of the iterated transformations. For example,
there are no periodic lattices invariant under a dilation factor of
=1+ \/g)/?,, but multiple transformations yield ¢”, which is arbitrarily
close to an integer for all » sufficiently large.

6. SUMMARY AND DISCUSSION

A number of general statements may be made concerning the analytic
properties of functions derived from fractal distributions. The self-similarity
of a charge distribution may be used, together with Mellin transform
techniques, to find an expansion for the potential near a point in the
distribution. The potential follows a power law in the distance from the
distribution, together with small oscillatory terms and a Taylor series.
The exponent is an effective dimension of the distribution: the Hausdorff
dimension in the case of a uniform distribution, as in Eq. (5.13), or some
other effective dimension of a multifractal distribution, as in Eq. (3.14).
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A simple recursion relation for the moments may be derived. If the
transformations defining the fractal do not contain rotations, the moments
may be evaluated directly, otherwise simultaneous linear equations must be
solved. The asymptotic behavior of the moments is closely related to that
of the potential close to the distribution, and thus involves the effective
dimension(s) of the distribution. This connection is difficult to exploit unless
the fractal has embedding dimension E=1, as in Eq.(3.46). For more
complicated cases, it appears that, in addition, E appears in the asymptotic
behavior of the moments, Eq. (4.7), but is not the only determining factor,
Egs. (5.21), (5.22).

The Fourier transform of a self-similar distribution may be written an
infinite product of sums of exponentials if the linear parts of all the trans-
formations are equal, Eq. (2.15). This is a slight generalization of the result
in ref. 7, although this paper includes some related, but not self-similar
fractals, which we do not. For large values of k the Fourier transform may
or may not tend to zero, depending on the transformations defining the
distribution. A discussion of this point for the case without rotations is
contained in ref. 7. From our analysis it appears that the von Koch snow-
flake is a rare example of a fractal defined using rotations for which the
Fourier transform does not tend to zero for large k. Averaging over Kk,
we find that the Fourier transform of the binomial Cantor distribution
decreases at a rate related to its smallest effective dimension, Eq. (3.54).
For the case of the Menger sponge this rate depended on other parameters,
not directly related to the dimension, Eq. (4.15).

There is clearly much scope for further work. The full structure of
the moments and Fourier transform of fractals with E>1 remains to
be clarified."*”) There are also problems in the potential theory of fractals
with different boundary conditions, such as fixing the potential on the
fractal, and solving for the charge distribution. As argued by Evertz and
Mandelbrot,® the charge distribution for this class of problem is multi-
fractal, but it is not exactly self-similar.
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